图像:性质:单调性 当k0时,图像经过第三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k0时,图像经过第四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
1、对称性:对称点:关于原点成中心对称。对称轴:自身所在直线;自身所在直线的平分线。
2、正比例函数的图像和性质如下:正比例函数y=kx(k≠0)中x和y的取值均为全体实数,又因为x=0时总有y=0,所以其图象是一条过原点(0,0)的直线。根据正比例函数解析式y=kx(k≠0),当x=1时,可得y=k。
3、单调性:当k0时,图像经过第三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k对称性:对称点:关于原点成中心对称。对称轴:自身所在直线;自身所在直线的垂直平分线。
1、一次函数是指形如y=kx+b的函数,其中k为常数,b为任意实数。
2、一次函数的性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3、一次函数在坐标轴上的图像是一条不垂直于x轴的直线。一次函数一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。k为一次函数y=kx+b的斜率。
4、一次函数性质:1.在正比例函数时,x与y的商一定。在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大 km,反之,当x减少m时,函数值y则减少 km。
二次函数的图像和性质如下:二次函数的性质:特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0)。当y=0时,二次函数为关于x的一元二次方程(以下称方程)。即ax2+bx+c=0(a≠0)。
图像:性质:单调性 当k0时,图像经过第三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k0时,图像经过第四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
正切函数的性质:定义域:{x|x≠(π/2)+kπ,k∈Z}。值域:实数集R。奇偶性:奇函数。
正切函数图像:定义域:{x|x≠(π/2)+kπ,k∈Z}。值域:实数集R。奇偶性:奇函数。单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数。
正余弦函数的图像是:性质 单调区间 正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减。